Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Effect of Metal-Chelating Polymers (MCPs) for IIIIn Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice

Identifieur interne : 000368 ( Main/Repository ); précédent : 000367; suivant : 000369

The Effect of Metal-Chelating Polymers (MCPs) for IIIIn Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice

Auteurs : RBID : Pascal:13-0113470

Descripteurs français

English descriptors

Abstract

Purpose To study the effects of backbone composition and charge of biotin-functionalized metal-chelating polymers (Bi-MCPs) for IIIIn complexed to streptavidin (SAv)-trastuzumab Fab fragments on tumor and normal tissue localization. Methods Bi-MCPs were synthesized with a polyacrylamide [Bi-PAm(DTPA)40], polyaspartamide [Bi-PAsp(DTPA)33] or polyglutamide [Bi-PGlu(DTPA)28] backbone and harboured diethylenetriaminepentaacetic acid (DTPA) chelators for IIIIn. Bi-PAm(DTPA)40 had a net negative charge; Bi-PAsp(DTPA)33 and Bi-PGlu(DTPA)28 were zwitterionic with a net neutral charge. Binding to HER2+ SKOV-3 human ovarian carcinoma cells was determined. Tissue uptake was studied in Balb/c mice by MicroSPECT/CT imaging and biodistribution studies. Tumor and normal tissue uptake of IIIIn-labeled Bi-PAsp(DTPA)33 or Bi-PGlu(DTPA)28 complexed to SAv-Fab was evaluated 48 h post-injection in athymic mice with subcutaneous SKOV-3 xenografts. Results SAv-Fab complexed to MCPs bound specifically to SKOV-3 cells; but specific binding was decreased 2-fold. Liver uptake was 5-13 fold higher for Bi-PAm(DTPA)4o than Bi-PAsp (DTPA)33 and Bi-PGlu(DTPA)28 but was reduced by decreasing negative charges by saturation with indium. IIIIn-Bi-PAsp(DTPA)33 complexed to SAv-Fab accumulated in SKOV-3 tumors; low tumor uptake was found for IIIIn-Bi-PGlu(DTPA)28-SAv-Fab. Conclusions Zwitterionic MCPs composed of polyaspartamide with a net neutral charge are most desirable for constructing radioimmunoconjugates.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0113470

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The Effect of Metal-Chelating Polymers (MCPs) for
<sup>III</sup>
In Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice</title>
<author>
<name sortKey="Boyle, Amanda J" uniqKey="Boyle A">Amanda J. Boyle</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmaceutical Sciences, University of Toronto</s1>
<s2>Toronto, Ontario M5S 3M2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3M2</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PENG LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, University of Toronto 80 St. George St.</s1>
<s2>Toronto, Ontario M5S 3H6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3H6</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YIJIE LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, University of Toronto 80 St. George St.</s1>
<s2>Toronto, Ontario M5S 3H6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3H6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weinrich, Dirk" uniqKey="Weinrich D">Dirk Weinrich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, University of Toronto 80 St. George St.</s1>
<s2>Toronto, Ontario M5S 3H6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3H6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scollard, Deborah A" uniqKey="Scollard D">Deborah A. Scollard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmaceutical Sciences, University of Toronto</s1>
<s2>Toronto, Ontario M5S 3M2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3M2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Njock Mbong, Ghislaine Ngo" uniqKey="Njock Mbong G">Ghislaine Ngo Njock Mbong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmaceutical Sciences, University of Toronto</s1>
<s2>Toronto, Ontario M5S 3M2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3M2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winnik, Mitchell A" uniqKey="Winnik M">Mitchell A. Winnik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, University of Toronto 80 St. George St.</s1>
<s2>Toronto, Ontario M5S 3H6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3H6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reilly, Raymond M" uniqKey="Reilly R">Raymond M. Reilly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmaceutical Sciences, University of Toronto</s1>
<s2>Toronto, Ontario M5S 3M2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3M2</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Toronto General Research Institute, University Health Network</s1>
<s2>Toronto, Ontario M5G 2C4</s2>
<s3>CAN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5G 2C4</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Medical Imaging, University of Toronto 150 College St.</s1>
<s2>Toronto, Ontario M5S 3E2</s2>
<s3>CAN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3E2</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0113470</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0113470 INIST</idno>
<idno type="RBID">Pascal:13-0113470</idno>
<idno type="wicri:Area/Main/Corpus">001154</idno>
<idno type="wicri:Area/Main/Repository">000368</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0724-8741</idno>
<title level="j" type="abbreviated">Pharm. res.</title>
<title level="j" type="main">Pharmaceutical research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Antineoplastic agent</term>
<term>Biotin</term>
<term>Distribution</term>
<term>Fab-Fragment</term>
<term>Human Epidermal growth factor Receptor 2</term>
<term>Immunomodulator</term>
<term>Malignant tumor</term>
<term>Metal</term>
<term>Mouse</term>
<term>Normal</term>
<term>Pharmaceutical technology</term>
<term>Polymer</term>
<term>Streptavidin</term>
<term>Tissue</term>
<term>Trastuzumab</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Métal</term>
<term>Polymère</term>
<term>Streptavidine</term>
<term>Biotine</term>
<term>Trastuzumab</term>
<term>Fragment peptidique Fab</term>
<term>Tumeur maligne</term>
<term>Normal</term>
<term>Tissu</term>
<term>Distribution</term>
<term>Animal</term>
<term>Souris</term>
<term>Technologie pharmaceutique</term>
<term>Anticancéreux</term>
<term>Immunomodulateur</term>
<term>Récepteur HER2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Métal</term>
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purpose To study the effects of backbone composition and charge of biotin-functionalized metal-chelating polymers (Bi-MCPs) for
<sup>III</sup>
In complexed to streptavidin (SAv)-trastuzumab Fab fragments on tumor and normal tissue localization. Methods Bi-MCPs were synthesized with a polyacrylamide [Bi-PAm(DTPA)
<sub>40</sub>
], polyaspartamide [Bi-PAsp(DTPA)
<sub>33</sub>
] or polyglutamide [Bi-PGlu(DTPA)
<sub>28</sub>
] backbone and harboured diethylenetriaminepentaacetic acid (DTPA) chelators for
<sup>III</sup>
In. Bi-PAm(DTPA)
<sub>40 </sub>
had a net negative charge; Bi-PAsp(DTPA)
<sub>33</sub>
and Bi-PGlu(DTPA)
<sub>28</sub>
were zwitterionic with a net neutral charge. Binding to HER2+ SKOV-3 human ovarian carcinoma cells was determined. Tissue uptake was studied in Balb/c mice by MicroSPECT/CT imaging and biodistribution studies. Tumor and normal tissue uptake of
<sup>III</sup>
In-labeled Bi-PAsp(DTPA)
<sub>33</sub>
or Bi-PGlu(DTPA)
<sub>28</sub>
complexed to SAv-Fab was evaluated 48 h post-injection in athymic mice with subcutaneous SKOV-3 xenografts. Results SAv-Fab complexed to MCPs bound specifically to SKOV-3 cells; but specific binding was decreased 2-fold. Liver uptake was 5-13 fold higher for Bi-PAm(DTPA)
<sub>4o</sub>
than Bi-PAsp (DTPA)
<sub>33</sub>
and Bi-PGlu(DTPA)
<sub>28</sub>
but was reduced by decreasing negative charges by saturation with indium.
<sup>III</sup>
In-Bi-PAsp(DTPA)
<sub>33 </sub>
complexed to SAv-Fab accumulated in SKOV-3 tumors; low tumor uptake was found for
<sup>III</sup>
In-Bi-PGlu(DTPA)
<sub>28</sub>
-SAv-Fab. Conclusions Zwitterionic MCPs composed of polyaspartamide with a net neutral charge are most desirable for constructing radioimmunoconjugates.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0724-8741</s0>
</fA01>
<fA02 i1="01">
<s0>PHREEB</s0>
</fA02>
<fA03 i2="1">
<s0>Pharm. res.</s0>
</fA03>
<fA05>
<s2>30</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The Effect of Metal-Chelating Polymers (MCPs) for
<sup>III</sup>
In Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOYLE (Amanda J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PENG LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YIJIE LU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WEINRICH (Dirk)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCOLLARD (Deborah A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NJOCK MBONG (Ghislaine Ngo)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WINNIK (Mitchell A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>REILLY (Raymond M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Pharmaceutical Sciences, University of Toronto</s1>
<s2>Toronto, Ontario M5S 3M2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, University of Toronto 80 St. George St.</s1>
<s2>Toronto, Ontario M5S 3H6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Toronto General Research Institute, University Health Network</s1>
<s2>Toronto, Ontario M5G 2C4</s2>
<s3>CAN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Medical Imaging, University of Toronto 150 College St.</s1>
<s2>Toronto, Ontario M5S 3E2</s2>
<s3>CAN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>104-116</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20257</s2>
<s5>354000506398980100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0113470</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Pharmaceutical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Purpose To study the effects of backbone composition and charge of biotin-functionalized metal-chelating polymers (Bi-MCPs) for
<sup>III</sup>
In complexed to streptavidin (SAv)-trastuzumab Fab fragments on tumor and normal tissue localization. Methods Bi-MCPs were synthesized with a polyacrylamide [Bi-PAm(DTPA)
<sub>40</sub>
], polyaspartamide [Bi-PAsp(DTPA)
<sub>33</sub>
] or polyglutamide [Bi-PGlu(DTPA)
<sub>28</sub>
] backbone and harboured diethylenetriaminepentaacetic acid (DTPA) chelators for
<sup>III</sup>
In. Bi-PAm(DTPA)
<sub>40 </sub>
had a net negative charge; Bi-PAsp(DTPA)
<sub>33</sub>
and Bi-PGlu(DTPA)
<sub>28</sub>
were zwitterionic with a net neutral charge. Binding to HER2+ SKOV-3 human ovarian carcinoma cells was determined. Tissue uptake was studied in Balb/c mice by MicroSPECT/CT imaging and biodistribution studies. Tumor and normal tissue uptake of
<sup>III</sup>
In-labeled Bi-PAsp(DTPA)
<sub>33</sub>
or Bi-PGlu(DTPA)
<sub>28</sub>
complexed to SAv-Fab was evaluated 48 h post-injection in athymic mice with subcutaneous SKOV-3 xenografts. Results SAv-Fab complexed to MCPs bound specifically to SKOV-3 cells; but specific binding was decreased 2-fold. Liver uptake was 5-13 fold higher for Bi-PAm(DTPA)
<sub>4o</sub>
than Bi-PAsp (DTPA)
<sub>33</sub>
and Bi-PGlu(DTPA)
<sub>28</sub>
but was reduced by decreasing negative charges by saturation with indium.
<sup>III</sup>
In-Bi-PAsp(DTPA)
<sub>33 </sub>
complexed to SAv-Fab accumulated in SKOV-3 tumors; low tumor uptake was found for
<sup>III</sup>
In-Bi-PGlu(DTPA)
<sub>28</sub>
-SAv-Fab. Conclusions Zwitterionic MCPs composed of polyaspartamide with a net neutral charge are most desirable for constructing radioimmunoconjugates.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B02A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Métal</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Metal</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Metal</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Streptavidine</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Streptavidin</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Streptavidina</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Biotine</s0>
<s2>FR</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Biotin</s0>
<s2>FR</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Biotina</s0>
<s2>FR</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Trastuzumab</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Trastuzumab</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Trastuzumab</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Fragment peptidique Fab</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Fab-Fragment</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fragmento peptídico Fab</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Tumeur maligne</s0>
<s2>NM</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Malignant tumor</s0>
<s2>NM</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tumor maligno</s0>
<s2>NM</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Normal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Normal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Normal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Tissu</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tissue</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tejido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Distribution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Distribution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Distribución</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Animal</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Animal</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Animal</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Souris</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Mouse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ratón</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Technologie pharmaceutique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Pharmaceutical technology</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tecnología farmacéutica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Anticancéreux</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Antineoplastic agent</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Anticanceroso</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Immunomodulateur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Immunomodulator</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Inmunomodulador</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Récepteur HER2</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Human Epidermal growth factor Receptor 2</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Cancer</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cancer</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Cáncer</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Vitamine B</s0>
<s5>37</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>B-Vitamins</s0>
<s5>37</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Vitamina B</s0>
<s5>37</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Anticorps monoclonal</s0>
<s5>38</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Monoclonal antibody</s0>
<s5>38</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Anticuerpo monoclonal</s0>
<s5>38</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Pharmacocinétique</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Pharmacokinetics</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Farmacocinética</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Anti-HER2</s0>
<s4>INC</s4>
<s5>86</s5>
</fC07>
<fN21>
<s1>084</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000368 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000368 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0113470
   |texte=   The Effect of Metal-Chelating Polymers (MCPs) for IIIIn Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024